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Magnetization measurements were performed to investigate the critical behavior of the field-induced
magnetic ordering in gapped spin system TlCuCl3. The critical density of the magnons was obtained as a
function of temperature and the magnon-magnon interaction constant was evaluated. The experimental
phase boundary for T < 5 K agrees almost perfectly with the magnon Bose–Einstein condensation (BEC)
theory based on the Hartree–Fock approximation with realistic dispersion relations. The phase boundary
can be described by the power law ½HNðTÞ � Hc� / T�. With decreasing fitting temperature range, the
critical exponent � decreases and converges at �BEC ¼ 3=2 predicted by the magnon BEC theory.
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Quantum spin system composed of antiferromagnetic spin
dimer often shows a gapped singlet ground state. In an
external magnetic field exceeding the energy gap �, Sz ¼ 1

component of the spin triplet is created in the system. The
field-induced Sz ¼ 1 component has the characteristics of
boson and is called magnon or triplon. Magnons move to
neighboring dimers and interact with one another due to the
transverse and longitudinal components of the interdimer
exchange interactions, respectively. Consequently, the spin
dimer system in the magnetic field can be represented as an
interacting boson system.1) Magnons can undergo Bose–
Einstein condensation (BEC) in a magnetic field higher than
the critical field Hc ¼ �=g�B, which leads to field-induced
magnetic ordering (FIMO).2,3) Nikuni et al.2) discussed the
FIMO observed in TlCuCl3,4) applying the Hartree–Fock
(HF) approximation to a simplified model

H ¼
X
k

"k � �ð Þaykak þ
U

2N

X
k;k0 ;q

aykþqa
y
k0�qakak0 ; ð1Þ

where "k is the kinetic energy determined by the curvature of
the dispersion around the lowest excitation, � the chemical
potential given by � ¼ g�BðH � HcÞ, U the interaction
constant and N the number of dimers. If a parabolic isotropic
dispersion relation "k ¼ ðh�kÞ2=2m is used, then the critical
chemical potential is given by

�c ¼ 5:22U
mkBT

2�h�
2

� �3=2

: ð2Þ

This relation leads to the phase boundary described by the
power law

ðg=2Þ HNðTÞ � Hc½ � ¼ AT�; ð3Þ

with critical exponent �BEC ¼ 3=2,2) where HNðTÞ is the
transition field at temperature T . A point given by T ¼ 0 and
H ¼ Hc on the temperature vs field diagram denotes the
quantum critical point (QCP). Equation (2) or (3) gives the
critical behavior near the QCP characteristic of the magnon

BEC. The BEC of magnons has been studied extensively in
many gapped spin systems5–12) and the power law behavior
of the phase boundary was confirmed.

TlCuCl3 is an S ¼ 1=2 interacting spin dimer system in
which a chemical dimer Cu2Cl6 forms a antiferromagnetic
spin dimer. The interactions between neighboring dimers
are three-dimensional. The lowest excitation occurs at Q ¼
ð0; 0; 1Þ and its equivalent reciprocal points.13–15) The
magnitude of the excitation gap is �=kB ¼ 7:5 K.4,16) In
the previous magnetization and specific heat measurements
in magnetic fields on TlCuCl3,4,17) it was shown that the
phase boundary for the FIMO is expressed by the power law
with critical exponent � ¼ 2:0{2:2. This critical exponent
is somewhat larger than �BEC ¼ 3=2. However, in a lower
temperature region 0:5 � T � 3 K Shindo and Tanaka
obtained rather smaller value � ¼ 1:67 by the specific heat
measurement in magnetic fields.18)

Recently, the deviation of � toward larger value from
�BEC ¼ 3=2 has been discussed theoretically.19–22) Using
stochastic series expansion quantum Monte Carlo simula-
tions, Nohadani et al.19) studied the FIMO in cubic lattices
of dimers with antiferromagnetic Heisenberg interactions
between dimers. They showed that � decreases with decreas-
ing fitting temperature range and converges at �BEC ¼ 3=2,
and that when fitting range is small enough, � is independent
of details of the system. They ascribed this behavior
to temperature-driven renormalization of the quasiparticle
effective mass and of the effective chemical potential. On
the other hand, Sherman et al.20) argued the critical exponent
�, assuming the relativistic dispersion of the form "k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ Ck2
p

, because the real dispersion curve around the
lowest excitation is better described by the relativistic form
than the parabolic one. They showed that the deviation of
the dispersion curve from the parabolic form gives rise to
the experimental larger exponent, and that the exponent
converges at �BEC ¼ 3=2 with decreasing fitting range.
Kawashima21) demonstrated analytically and numerically
that the critical exponent �BEC ¼ 3=2 derived by the HF
approximation is exact, although the HF result is usually
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incorrect for the critical behavior. Misguich and Oshikawa22)

extended the HF calculation by Nikuni et al.,2) using a
realistic dispersion relation13,15) and achieved remarkable
quantitative agreement with the experimental phase diagram.
They also calculated the critical density of magnons ncr,
which corresponds to the absolute value of the magnet-
ization at TN.

To the best of the authors’ knowledge, TlCuCl3 is the best
system to study the magnon BEC and the critical behavior,
because details of the magnetic excitations are known and
the BEC state can be reached using conventional super-
conducting magnet. To obtain precise critical exponent
� and critical density ncr, we carried out magnetization
measurements on TlCuCl3 down to 77 mK.

Single crystals of TlCuCl3 were grown by the vertical
Bridgman method. The details of preparation were reported
in ref. 4. The magnetization measurements were performed
using superconducting quantum interference device
(SQUID) magnetometer (Quantum Design MPMS XL) in
the temperature region 1:8 � T � 100 K in magnetic fields
of up to 7 T. The magnetic fields were applied parallel to the
b-axis and ½2; 0; 1� direction and perpendicular to the ð1; 0; �22Þ
plane. The magnetization measurements were also per-
formed using Faraday Force Magnetometer23) at Institute of
Solid State Physics in the temperature region 77 mK � T �
4K in magnetic fields up to 7 T using a dilution refrigerator.
The magnetic field was applied perpendicular to the ð1; 0; �22Þ
plane. The gradient field of 5 and 8 T/m was applied to
produce the Faraday force.

Figure 1 shows low-temperature magnetization M meas-
ured at various external fields for H ? ð1; 0; �22Þ. As temper-
ature is decreased, the magnetization decreases with convex
function of temperature and then increases exhibiting the
cusplike minimum indicative of the three-dimensional
magnetic ordering. This magnetization behavior was ob-
served, irrespective of field direction. We assign the tem-

perature giving magnetization minimum to the ordering
temperature TN. For T > TN, the magnetization corresponds
to the number of thermally excited magnons, which
decreases with decreasing temperature. The BEC of mag-
nons occurs at T ¼ TN, and below TN, the number of
condensed magnons increases with lowering temperature.
The increase of the condensed magnons surpasses the
decrease of thermally excited magnons. For this reason,
the magnetization has the minimum at TN. With decreasing
magnetic field, TN decreases, and the cusplike anomaly due
to the phase transition becomes smaller. This is because the
number of magnons relevant to the BEC decreases when the
magnetic field approaches the critical field Hc.

The critical density ncr corresponds to the absolute values
of the magnetization at TN and is obtained from the
minimum of the magnetization Mcr as ncr ¼ ð2=g�BÞMcr.
We corrected the magnetization for the paramagnetism due
to impurities which produce the magnetization described by
the Brillouin function of H=T , and also for the Van Vleck
paramagnetism and the diamagnetism due to core electrons.
The g-factors used are g ¼ 2:06 for H k b and H k ½2; 0; 1�
and g ¼ 2:23 for H ? ð1; 0; �22Þ, which were determined
by electron spin resonance (ESR) measurements. Figure 2
shows the critical density ncr as a function of temperature.
The solid line in Fig. 2 is the critical density calculated by
Misguich and Oshikawa22) using the realistic dispersion.13,15)

The experimental and theoretical critical densities agree well
in the low temperature region of T � 3 K. However, in the
high temperature region, the experimental values are larger
than the theoretical ones. The disagreement increases with
increasing temperature.

In the HF approximation, the transition field HNðTÞ is
expressed as22)

ðg=2Þ½HNðTÞ � Hc� ¼ 2UncrðTÞ: ð4Þ

Using eq. (4) and the experimental critical density shown in
Fig. 2, we evaluate the magnon–magnon interaction constant
U. Figure 3 shows the plots of transition field HNðTÞ vs
critical density ncrðTÞ, where HNðTÞ is normalized by the
g-factor. The linear relation between HNðTÞ and ncrðTÞ holds
for ncrðTÞ � 3� 10�3. Fitting eq. (4) in this small ncrðTÞ
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Fig. 1. (Color online) The temperature dependence of the magnetizations

of TlCuCl3 measured at various magnetic fields for H ? ð1; 0; �22Þ.
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Fig. 2. (Color online) Temperature dependence of critical density of

magnons in TlCuCl3 for H k b, H k ½2; 0; 1�, and H ? ð1; 0; �22Þ. The solid

line is the theoretical calculation by Misguich and Oshikawa.22)
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region, we obtain U=kB ¼ 312, 311, and 315 K for H k b,
H ? ð1; 0; �22Þ and H k ½2; 0; 1�, respectively. Their average is
U=kB ¼ 313 K. This value of U is somewhat smaller than
U=kB ¼ 340 K obtained by Misguich and Oshikawa22) using
the magnetization data reported in ref. 4.

To determine the transition fields for T < 1:8 K, we
performed magnetization measurements using the Faraday
Force Magnetometer. Figure 4 shows the magnetization
curve measured between 77 mK and 1.2 K for H ? ð1; 0; �22Þ.
The raw magnetization has the small background in the low
field region due to impurity phase which should be hydrate
on the sample surface. In Fig. 4, the background magnet-

ization was corrected. The magnetization is almost zero up
to the transition field HN ’ 4:7 T and increases rapidly. The
gapless ordered state appears for H > HN. The magnet-
ization does not show sharp bend at HN, but is rather
rounded even at 77 mK. This is ascribed not to the gradient
field to produce the Faraday force, because the distribution
of magnetic field in the sample is less than 0.04 T. We infer
that the antisymmetric interaction of the Dzyaloshinsky–
Moriya type which mixes the singlet and triplet states gives
rise to the smearing of the magnetization anomaly at HN. We
assign the transition field HNðTÞ to the field of inflection in
the derivative of magnetization dM=dH, as shown in the
inset of Fig. 4.

The phase transition points obtained by temperature and
field scans of magnetization are summarized in Fig. 5. Since
the phase boundaries for H k b, H k ½2; 0; 1�, and H ?
ð1; 0; �22Þ coincide when normalized by the g-factor, we can
deduce that the phase boundary is independent of the
external field direction, which implies that the magnetic
anisotropy is negligible in TlCuCl3. Solid line in Fig. 5
is the HF calculation using the realistic dispersion13,15,22)

and the interaction constant of U=kB ¼ 313 K obtained by
our magnetization measurement. The experimental phase
boundary for T < 5 K agrees almost perfectly with the cal-
culation.

We analyze the phase boundary for the magnetic field
perpendicular to the ð1; 0; �22Þ plane using the power law given
by eq. (3). We fit eq. (3) in the temperature range of
Tmin � T � Tmax, setting the lowest temperature at Tmin ¼
77 mK and varying the highest temperature Tmax from
4.6 to 1.94 K. The critical exponent � obtained by the
fit is graphed in Fig. 6. It is observed that the critical
exponent � decreases with decreasing Tmax, and converges
at �BEC ¼ 3=2, as recent theory predicts.19,20,22) For Tmax �
2:4 K, we obtain ðg=2ÞHc ¼ 5:27� 0:01 T, A ¼ 0:225�
0:01 T/K�, and � ¼ 1:50� 0:06. When � ¼ 3=2, the pa-
rameter A corresponds to the coefficient of T3=2 in eq. (2),
and is given by
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A ¼
2:61U

�B

mkB

2�h�
2

� �3=2

: ð5Þ

Substituting A ¼ 0:225 T/K1:5 into eq. (5), we obtain
mkB=h�

2 ¼ 0:0204 K�1. This value is consistent with
mkB=h�

2 ¼ 0:0229 K�1 evaluated from the curvature of the
dispersion relation around the lowest excitation.22) In eq. (2),
the lattice constant is chosen to be unity. If we use an
average lattice constant �aa given by �aa ¼ ðabc sin �Þ1=3, where
a ¼ 3:98 Å, b ¼ 14:14 Å, c ¼ 8:89 Å, and � ¼ 96:32� are
lattice parameters in TlCuCl3,24) we obtain m ¼ 2:61�
10�26 g. This effective magnon mass is approximately 1/60
of the proton mass. This smaller magnon mass enables the
BEC at helium temperatures in spite of small density of
order of 10�3.

In conclusion, we have presented the results of mag-
netization measurements performed on TlCuCl3 at temper-
atures down to 77 mK and in magnetic fields up to 7 T for
three different field directions. The critical density of
magnons as a function of temperature and the magnetic
phase diagram for external field vs temperature were
obtained. The magnon–magnon interaction constant was
estimated as U=kB ¼ 313 K. The phase boundary is ex-
pressed by the power law of eq. (3) and agrees almost
perfectly with the magnon BEC theory based on the HF
approximation with realistic dispersion relations22) and
U=kB ¼ 313 K obtained by our magnetization measurement.
The critical exponent � decreases with decreasing fitting
temperature range. For 77 mK � T � 2:4 K, we obtained
� ¼ 1:50� 0:06, which coincides with �BEC ¼ 3=2 derived
from the magnon BEC theory.2,21) The effective magnon
mass obtained by the present analysis is consistent with
that evaluated from the curvature of the dispersion relation
around the lowest excitation. The present results strongly

support the BEC description of the field-induced magnetic
ordering in TlCuCl3.
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